C-kit+ cardiac progenitors exhibit mesenchymal markers and preferential cardiovascular commitment.
نویسندگان
چکیده
AIMS The heart contains c-kit(+) progenitors that maintain cardiac homeostasis. Cardiac c-kit(+) cells are multipotent and give rise to myocardial, endothelial and smooth muscle cells, both in vitro and in vivo. C-kit(+) cells have been thoroughly investigated for their stem cell activity, susceptibility to stress conditions and ageing, as well as for their ability to repair the infarcted heart. Recently, expression of mesenchymal stem cell (MSC) markers and MSC differentiation potency have been reported in cardiac progenitor cells. Based on this evidence, we hypothesized that c-kit(+) cells may have phenotypic and functional features in common with cardiac MSCs. METHODS AND RESULTS Culture of cells obtained from enzymatic dissociation of heart auricle fragments produced a fast-growing fibroblast-like population expressing mesenchymal markers. C-kit(+) cells co-expressing MSC markers were identified in this population, sorted by flow cytometry and cultured in the presence or the absence of unselected cardiac cells from the same patients. Subsets of c-kit(+) cells also co-expressed MSCs markers in vivo, as detected by immunofluorescence analysis of auricle tissue. Ex vivo expanded c-kit(+) cells produced osteoblasts and adipocytes, although less preferentially than bone marrow-derived MSCs, possessed vascular smooth muscle cell features and were induced to differentiate into endothelium-like and cardiac-like cells. CONCLUSION In line with previous findings, our results indicate that c-kit(+) cardiac progenitors are primitive stem cells endowed with multilineage differentiation ability. They further suggest a possible relationship between these cells and a heart-specific MSC population with cardiovascular commitment potential.
منابع مشابه
Isolation and Characterization of Human Induced Pluripotent Stem Cells-Derived Mesenchymal Progenitors
Purpose: Isolating human induced pluripotent stem cells (hiPS)-derived mesenchymal progenitors as a new source of mesenchymal cells which can differentiate into different lineages like adipose and bone. Materials and Methods: After 7 days of hiPS1 culture on matrigle coated dishes, spindle like cells around colonies were removed by cell scraper. These cells that had mesenchymal like morphology ...
متن کاملChronic Heart Failure Is Associated With Transforming Growth Factor Beta‐Dependent Yield and Functional Decline in Atrial Explant‐Derived c‐Kit+ Cells
BACKGROUND Cardiac c-Kit+ cells isolated from cardiac explant-derived cells modestly improve cardiac functions after myocardial infarction; however, their full potential has not yet been realized. For instance, the majority of potential candidates for cell therapy suffer from chronic heart failure (CHF), and it is unclear how this disease affects the explant-derived progenitor cells. Therefore,...
متن کاملCardiac Explant-Derived Cells Are Regulated by Notch-Modulated Mesenchymal Transition
BACKGROUND Progenitor cell therapy is emerging as a novel treatment for heart failure. However the molecular mechanisms regulating the generation of cardiac progenitor cells is not fully understood. We hypothesized that cardiac progenitor cells are generated from cardiac explant via a process similar to epithelial to mesenchymal transition (EMT). METHODS/FINDINGS Explant-derived cells were ge...
متن کاملبررسی مورفولوژی و ایمونوهیستوشیمیایی تومورهای استرومایی لوله گوارش و ارزش بروز c-kit در تشخیص هیستومورفولوژیک آنها
Background & Aim: Gastrointestinal stromal tumors(GISTs) are the most common mesenchymal tumors of gastrointestinal tract. They are known to express c-kit, which is important in their diagnosis and treatment. The aim of our study was to assess the morphologic and immunohistochemical features of gastrointestinal stromal tumors and the significance of c-kit expression in them. Materials and M...
متن کاملA Hyper-Crosslinked Carbohydrate Polymer Scaffold Facilitates Lineage Commitment and Maintains a Reserve Pool of Proliferating Cardiovascular Progenitors
BACKGROUND Cardiovascular progenitor cells (CPCs) have been cultured on various scaffolds to resolve the challenge of cell retention after transplantation and to improve functional outcome after cell-based cardiac therapy. Previous studies have reported successful culture of fully differentiated cardiomyocytes on scaffolds of various types, and ongoing efforts are focused on optimizing the mix ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 89 2 شماره
صفحات -
تاریخ انتشار 2011